On the Internal Sum of Positive Monoids

Jonathan Du, Bryan Li, Nick Zhang

MIT PRIMES-USA

(Mentored by Dr. Felix Gotti)

Fall-Term PRIMES Conference October 12-13, 2024

2 Existence of Factorizations

3 Ascending Chains of Principal Ideals

Some General Notation

- \mathbb{N} denotes the set of positive integers.
- $\bullet~\mathbb{N}_0$ denotes the set of non-negative integers.
- \mathbb{P} denotes the set of standard (positive) primes.

Definition. A monoid is a set M equipped with a binary operation "+" satisfying

- (a + b) + c = a + (b + c) for all $a, b, c \in M$ (associativity);
- There exists an element 0 in M, often called the zero/identity element, such that 0 + a = a + 0 = a for all $a \in M$.
- a + b = b + a for all $a, b \in M$ (commutativity).

Let M be a monoid.

- A subset N of M is called a submonoid of M if N contains the identity of M and is closed under "+".
- An additive submonoid of $\mathbb{R}_{>0}$ is called a positive monoid.

Remark. Positive monoids are the most relevant objects in this talk.

Definition. Let *M* be a monoid.

 For a, b ∈ M, we say a (additively) divides b (or b is divisible by a) if there exists c ∈ M such that a + c = b. In this case, we write

а | м b.

Example. In the submonoid $N := \mathbb{N}_0 \setminus \{1\}$ of \mathbb{N}_0 :

- 2 $|_N$ 5 because 5 = 2 + 3 and 2, 3 \in N, while
- $2 \nmid_N 3$ because $1 \notin N$.

Definition. Let *M* be a monoid.

- The submonoid generated by a subset S of M, written as $\langle S \rangle$, is the smallest (under set inclusion) submonoid of M containing S.
- We call S a generating set of $\langle S \rangle$.
- We say that a monoid is finitely generated if it has a finite generating set.

Example. The additive submonoid $\mathbb{N}_0 \setminus \{1\}$ of \mathbb{N}_0 has $\{2, 3\}$ as a generating set, but it does not have any generating set of size 1.

Definition. Let G be an abelian group, and let M_1 and M_2 be submonoids of G. The internal sum of M_1 and M_2 , denoted by $M_1 + M_2$, is the submonoid of G generated by the set $M_1 \cup M_2$ (i.e., the smallest submonoid of G containing both M_1 and M_2):

$$M_1 + M_2 := \{b_1 + b_2 : b_1 \in M_1, b_2 \in M_2\}.$$

Proposition (easy to show)

If S_1 and S_2 are subsets of an abelian group G, then $\langle S_1 \rangle + \langle S_2 \rangle = \langle S_1 \cup S_2 \rangle$

Atomicity: Existence of Factorization

Definition. Let M be a monoid.

- An element $u \in M$ is invertible if there exists $u' \in M$ with u + u' = 0.
- A non-invertible element a ∈ M is an atom if there does not exist non-invertibles b, c ∈ M such that b + c = a. The set of atoms of M is denoted by A(M).
- We call an element of M atomic if it is invertible or is in the submonoid generated by $\mathcal{A}(M)$.
- The monoid M is atomic if every element of M is atomic.

Examples

- A finitely generated monoid is atomic.
- The monoid $\left\langle \frac{1}{p} : p \in \mathbb{P} \right\rangle$ is atomic because one can show that each $\frac{1}{p}$ is an atom, which means the entire monoid is generated by atoms.

Theorem (D-L-Z, 2024)

Let M and N be positive monoids such that N is finitely generated and M is atomic, then M + N is atomic.

Jonathan Du, Bryan Li, Nick Zhang

Preservation of Atomicity under Internal Sum

Remark. The internal sum of a general atomic monoid and a finitely generated monoid is not necessarily atomic.

Example. There exists an atomic monoid whose internal sum with a finitely generated monoid is not atomic.

- Set $M_1 := \langle (1,0), (0,1) \rangle$, a finitely generated monoid.
- Set $M_2 := \langle (n, 1) : n \in \mathbb{Z} \rangle$, an atomic monoid.

The only atom of the monoid $M := M_1 + M_2$ is (1, 0).

Remark. The internal sum of two atomic positive monoids may not even have any atoms (although the construction is somehow technical).

Definition. Let *M* be a monoid.

- A principal ideal of M is a subset of M of the form b + M for some $b \in M$.
- An ascending chain of subsets of M is a sequence of subsets $S_1, S_2, S_3, \dots \subset M$ such that $S_1 \subset S_2 \subset S_3 \subset \dots$.
- An ascending chain is said to stabilize if there exists $N \in \mathbb{N}$ such that $S_N = S_i$ for all $i \ge N$.
- The monoid M satisfies the ACCP if, for all $b \in M$, every ascending chain of principal ideals starting at b + M stabilizes.

Remark. All ACCP monoids are atomic.

Theorem (Geroldinger-Gotti, 2024)

Let M and N be positive monoids such that N is finitely generated. If M satisfies the ACCP, then M + N satisfies the ACCP.

Example: There exist two ACCP positive monoids whose internal sum does not satisfy the ACCP.

- Set $M_1 := \{0\} \cup \mathbb{Q}_{\geq 1}$.
- Suppose M₁ is not ACCP; then there exists an infinite, strictly ascending chain of principal ideals

$$a_1 + M_1 \subsetneq a_2 + M_1 \subsetneq a_3 + M_1 \subsetneq \cdots$$

- Note that $a_2 \mid_{M_1} a_1 \implies a_1 a_2 \in M_1$. But since $a_1 a_2 \neq 0$, we must have $a_1 a_2 \geq 1$.
- Similarly, $a_2 a_3 \ge 1$, and so on. Thus, $a_1 a_{n+1} \ge n$ for all $n \in \mathbb{N}$. Since a_n is always nonnegative, this is impossible.

Set

$$M_2:=\left\langle rac{p_n+1}{p_n^2}:n\in\mathbb{N}
ight
angle ,$$

where p_n is the *n*-th prime.

• It is possible to show that M_2 is ACCP, and in fact, a finite factorization monoid (a fact that will be defined and demonstrated later).

Preservation of ACCP under Internal Sum

- Let $M := M_1 + M_2$. We will show that M does not satisfy the ACCP; in fact, it is not atomic.
- $\frac{p_n+1}{p_n^2}$ grows arbitrarily close to zero for large $n \in \mathbb{N}$.
- Thus, any element $b \in M$ with b > 1 is divisible in M by $\frac{p_n+1}{p_n^2}$ for some large $n \in \mathbb{N}$. Hence b is not an atom.

$$\mathcal{A}(M)\subseteq \{1\}\cup\left\{rac{p_n+1}{p_n^2}:n\in\mathbb{N}
ight\}.$$

- Only Note that the sum of atoms of M cannot have the cube of any prime in its denominator.
- **(a)** Thus, the element $\frac{9}{8} \in M$ is not atomic.
- Hence, M is not an atomic monoid, thus is not ACCP.

Definitions. Let *M* be a monoid.

- Let r be an element of M. An (additive) factorization of r is defined as a formal sum of finitely many atoms of M equaling r, and define the length of a factorization of $r \in M$ is its number of atoms (counting repetitions).
- The monoid M is called a bounded factorization monoid (BFM) if for all noninvertible elements $r \in M$ there is an upper bound on the length of all factorizations of r.

Example. The monoid $M_1 := \{0\} \cup \mathbb{Q}_{\geq 1}$ is a BFM.

Remark. Every positive monoid M such that zero is not a limit point of $M \setminus \{0\}$ is a BFM.

Theorem (D-L-Z, 2024)

Let M and N be positive monoids such that N is finitely generated. Then if M is a BFM, then M + N is a BFM.

Example. Let $M_1 := \{0\} \cup \mathbb{Q}_{\geq 1}$, and let $M_2 := \left\langle \frac{p_n+1}{p_n^2} : n \in \mathbb{N} \right\rangle$, where p_n is the *n*-th prime.

- Consider any element $r \in M_2$. We can set $r = k + \frac{a}{b}$, where $k \in \mathbb{N}$ and $0 \le a < b$.
- Only a finite number of primes p_n satisfy p_n + 1 ≤ k, and only a finite number of primes p_n satisfy p_n | b.
- In order for $\frac{p_n+1}{p_n^2}$ to divide $r = k + \frac{a}{b}$, at least one of the above statements must be true.
- Only finitely many atoms of M_2 can divide r, so there exists a minimal divisor d of r.
- **(**) Thus the length of a factorization of r is at most $\frac{r}{d}$, so M_2 is a BFM.

Definition. A monoid M is a finite factorization monoid (FFM) if every element $r \in M$ is only divisible by finitely many elements of M (up to associates).

Remarks

Every FFM is a BFM.

Every finitely generated monoid is an FFM.

Example.
$$M_2 := \left\langle \frac{p_n+1}{p_n^2} : n \in \mathbb{N} \right\rangle$$
 is an FFM.

Theorem (D-L-Z, 2024)

Let M and N be positive monoids such that N is finitely generated. Then if M is an FFM, then M + N is an FFM.

Example. Let $M_1 := \left\langle \frac{p-1}{p} : p \in \mathbb{P}_{\geq 5} \right\rangle$, and let $M_2 := \left\langle \frac{p+1}{p} : p \in \mathbb{P}_{\geq 5} \right\rangle$. M_1 and M_2 are both FFMs, but their internal sum $M := M_1 + M_2$ is not an FFM.

- Consider any element $r \in M_1$. Once again, we can write $r = n + \frac{a}{b}$, where $n \in \mathbb{N}$ and a < b.
- Only finitely many primes p satisfy $p 1 \le n$ or $p \mid b$.
- Only finitely many atoms $\frac{p-1}{p} \in M_1$ can satisfy $\frac{p-1}{p} \mid_{M_1} r$.
- This implies that only finitely many elements $d \in M_1$ can divide r.
- M_2 can similarly be shown to be an FFM.
- However, their internal sum $M = M_1 + M_2$ contains the element 2, which can be written as $2 = \frac{p-1}{p} + \frac{p+1}{p}$ for all $p \in \mathbb{P}_{\geq 5}$, so M is not an FFM.

- We are grateful to our PRIMES-USA mentor, Dr. Felix Gotti, for his excellent instruction, guidance, and continued support throughout our research.
- We would also like to thank the organizers of the MIT-PRIMES program for the time and effort they have put in to create this math research opportunity.

References

- D. D. Anderson, D. F. Anderson, and M. Zafrullah, *Factorizations in integral domains*, J. Pure Appl. Algebra **69** (1990) 1–19.
- A. Geroldinger and F. Gotti, On monoid algebras having every nonempty subset of N≥2. Submitted. Preprint on arXiv: https://arxiv.org/pdf/2404.11494
- A. Geroldinger and F. Halter-Koch, Non-unique Factorizations: Algebraic, Combinatorial and Analytic Theory, Pure and Applied Mathematics Vol. 278, Chapman & Hall/CRC, Boca Raton, 2006.
- A. Geroldinger and Q. Zhong, *A characterization of length-factorial Krull monoids*, New York J. Math. **27** (2021) 1347–1374.
- F. Halter-Koch, *Finiteness theorems for factorizations*, Semigroup Forum **44** (1992) 112–117.
- A. Grams, Atomic rings and the ascending chain condition for principal ideals, Proc. Cambridge Philos. Soc., **75** (1974) 321–329.

F. Gotti and B. Li, *Divisibility and a weak ascending chain condition on principal ideals*, arXiv preprint, arXiv:2212.06213, 2022.

Jonathan Du, Bryan Li, Nick Zhang

THANK YOU!