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General Notations

Some General Notation

N denotes the set of positive integers.

N0 denotes the set of non-negative integers.

P denotes the set of standard (positive) primes.
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Positive Monoids

Definition. A monoid is a set M equipped with a binary operation “ + ”
satisfying

(a+ b) + c = a+ (b + c) for all a, b, c ∈ M (associativity);

There exists an element 0 in M, often called the zero/identity element,
such that 0 + a = a+ 0 = a for all a ∈ M.

a+ b = b + a for all a, b ∈ M (commutativity).

Let M be a monoid.

A subset N of M is called a submonoid of M if N contains the identity of
M and is closed under “ + ”.

An additive submonoid of R≥0 is called a positive monoid.

Remark. Positive monoids are the most relevant objects in this talk.
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Divisibility

Definition. Let M be a monoid.

For a, b ∈ M, we say a (additively) divides b (or b is divisible by a) if
there exists c ∈ M such that a+ c = b. In this case, we write

a |M b.

Example. In the submonoid N := N0\{1} of N0:

2 |N 5 because 5 = 2 + 3 and 2, 3 ∈ N, while

2 ∤N 3 because 1 /∈ N.
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Generating Sets and Finitely Generated Monoids

Definition. Let M be a monoid.

The submonoid generated by a subset S of M, written as ⟨S⟩, is the
smallest (under set inclusion) submonoid of M containing S .

We call S a generating set of ⟨S⟩.

We say that a monoid is finitely generated if it has a finite generating set.

Example. The additive submonoid N0\{1} of N0 has {2, 3} as a generating
set, but it does not have any generating set of size 1.
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Internal Sums

Definition. Let G be an abelian group, and let M1 and M2 be submonoids
of G . The internal sum of M1 and M2, denoted by M1 +M2, is the submonoid
of G generated by the set M1 ∪M2 (i.e., the smallest submonoid of G
containing both M1 and M2):

M1 +M2 := {b1 + b2 : b1 ∈ M1, b2 ∈ M2}.

Proposition (easy to show)

If S1 and S2 are subsets of an abelian group G, then ⟨S1⟩+ ⟨S2⟩ = ⟨S1 ∪ S2⟩
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Atomicity: Existence of Factorization

Definition. Let M be a monoid.

An element u ∈ M is invertible if there exists u′ ∈ M with u + u′ = 0.

A non-invertible element a ∈ M is an atom if there does not exist
non-invertibles b, c ∈ M such that b + c = a. The set of atoms of M is
denoted by A(M).

We call an element of M atomic if it is invertible or is in the submonoid
generated by A(M).

The monoid M is atomic if every element of M is atomic.

Examples

A finitely generated monoid is atomic.

The monoid
〈

1
p
: p ∈ P

〉
is atomic because one can show that each 1

p
is

an atom, which means the entire monoid is generated by atoms.

Theorem (D-L-Z, 2024)

Let M and N be positive monoids such that N is finitely generated and M is
atomic, then M + N is atomic.
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Preservation of Atomicity under Internal Sum

Remark. The internal sum of a general atomic monoid and a finitely generated
monoid is not necessarily atomic.

Example. There exists an atomic monoid whose internal sum with a finitely
generated monoid is not atomic.

Set M1 := ⟨(1, 0), (0, 1)⟩, a finitely generated monoid.

Set M2 := ⟨(n, 1) : n ∈ Z⟩, an atomic monoid.

The only atom of the monoid M := M1 +M2 is (1, 0).

+ =

Remark. The internal sum of two atomic positive monoids may not even have
any atoms (although the construction is somehow technical).
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The Ascending Chain Condition on Principal Ideals (ACCP)

Definition. Let M be a monoid.

A principal ideal of M is a subset of M of the form b +M for some
b ∈ M.

An ascending chain of subsets of M is a sequence of subsets
S1, S2, S3, · · · ⊂ M such that S1 ⊂ S2 ⊂ S3 ⊂ · · · .

An ascending chain is said to stabilize if there exists N ∈ N such that
SN = Si for all i ≥ N.

The monoid M satisfies the ACCP if, for all b ∈ M, every ascending chain
of principal ideals starting at b +M stabilizes.

Remark. All ACCP monoids are atomic.

Theorem (Geroldinger-Gotti, 2024)

Let M and N be positive monoids such that N is finitely generated. If M
satisfies the ACCP, then M + N satisfies the ACCP.
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Preservation of ACCP under Internal Sum

Example: There exist two ACCP positive monoids whose internal sum does
not satisfy the ACCP.

1 Set M1 := {0} ∪Q≥1.

2 Suppose M1 is not ACCP; then there exists an infinite, strictly ascending
chain of principal ideals

a1 +M1 ⊊ a2 +M1 ⊊ a3 +M1 ⊊ · · · .

3 Note that a2 |M1 a1 =⇒ a1 − a2 ∈ M1. But since a1 − a2 ̸= 0, we must
have a1 − a2 ≥ 1.

4 Similarly, a2 − a3 ≥ 1, and so on. Thus, a1 − an+1 ≥ n for all n ∈ N.
Since an is always nonnegative, this is impossible.
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Preservation of ACCP under Internal Sum

5 Set

M2 :=

〈
pn + 1

p2
n

: n ∈ N
〉
,

where pn is the n-th prime.

6 It is possible to show that M2 is ACCP, and in fact, a finite factorization
monoid (a fact that will be defined and demonstrated later).
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Preservation of ACCP under Internal Sum

7 Let M := M1 +M2. We will show that M does not satisfy the ACCP; in
fact, it is not atomic.

8
pn+1
p2n

grows arbitrarily close to zero for large n ∈ N.

9 Thus, any element b ∈ M with b > 1 is divisible in M by pn+1
p2n

for some

large n ∈ N. Hence b is not an atom.

10 Hence,

A(M) ⊆ {1} ∪
{
pn + 1

p2
n

: n ∈ N
}
.

11 Note that the sum of atoms of M cannot have the cube of any prime in
its denominator.

12 Thus, the element 9
8
∈ M is not atomic.

13 Hence, M is not an atomic monoid, thus is not ACCP.
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Factorization and the BFM Property

Definitions. Let M be a monoid.

1 Let r be an element of M. An (additive) factorization of r is defined as a
formal sum of finitely many atoms of M equaling r , and define the length
of a factorization of r ∈ M is its number of atoms (counting repetitions).

2 The monoid M is called a bounded factorization monoid (BFM) if for all
noninvertible elements r ∈ M there is an upper bound on the length of all
factorizations of r .

Example. The monoid M1 := {0} ∪Q≥1 is a BFM.

Remark. Every positive monoid M such that zero is not a limit point of
M \ {0} is a BFM.

Theorem (D-L-Z, 2024)

Let M and N be positive monoids such that N is finitely generated. Then if M
is a BFM, then M + N is a BFM.
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The BFM Property under Internal Sum

Example. Let M1 := {0} ∪Q≥1, and let M2 :=
〈

pn+1
p2n

: n ∈ N
〉
, where pn is

the n-th prime.

1 Consider any element r ∈ M2. We can set r = k + a
b
, where k ∈ N and

0 ≤ a < b.

2 Only a finite number of primes pn satisfy pn + 1 ≤ k, and only a finite
number of primes pn satisfy pn | b.

3 In order for pn+1
p2n

to divide r = k + a
b
, at least one of the above

statements must be true.

4 Only finitely many atoms of M2 can divide r , so there exists a minimal
divisor d of r .

5 Thus the length of a factorization of r is at most r
d
, so M2 is a BFM.
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Finite Factorization Monoids

Definition. A monoid M is a finite factorization monoid (FFM) if every element
r ∈ M is only divisible by finitely many elements of M (up to associates).

Remarks

1 Every FFM is a BFM.

2 Every finitely generated monoid is an FFM.

Example. M2 :=
〈

pn+1
p2n

: n ∈ N
〉
is an FFM.

Theorem (D-L-Z, 2024)

Let M and N be positive monoids such that N is finitely generated. Then if M
is an FFM, then M + N is an FFM.
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The FFM Property under Internal Sum

Example. Let M1 :=
〈

p−1
p

: p ∈ P≥5

〉
, and let M2 :=

〈
p+1
p

: p ∈ P≥5

〉
. M1

and M2 are both FFMs, but their internal sum M := M1 +M2 is not an FFM.

1 Consider any element r ∈ M1. Once again, we can write r = n+ a
b
, where

n ∈ N and a < b.

2 Only finitely many primes p satisfy p − 1 ≤ n or p | b.

3 Only finitely many atoms p−1
p

∈ M1 can satisfy p−1
p

|M1 r .

4 This implies that only finitely many elements d ∈ M1 can divide r .

5 M2 can similarly be shown to be an FFM.

6 However, their internal sum M = M1 +M2 contains the element 2, which
can be written as 2 = p−1

p
+ p+1

p
for all p ∈ P≥5, so M is not an FFM.
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End of Presentation

THANK YOU!
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